
Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 1

Using Simulated Execution in 
Verifying Distributed Algorithms

"How to help a theorem prover with execution 
data"

Toh Ne Win, Michael Ernst, Stephen Garland,
Dilsun Kirli Kaynar, Nancy Lynch



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 2

Goal: make theorem provers
easier to use

● Why do we want to use a prover?
– To verify general, infinite state systems

● What's hard about using a prover?
– They get stuck and need human input



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 3

What kind of human input?

Theorem
prover

Program to be verified

Verified proof



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 4

What kind of human input?

Theorem
prover

Program to be verified

Verified proof

Tactics
Proof structure

Case analysis

Which facts to use



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 5

What kind of human input?

Theorem
prover

Program to be verified

Verified proof

TacticsLemmas
Human insight and intuition

on invariants of reachable states

Proof structure

Case analysis

Which facts to use



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 6

Traditional approaches

Theorem
prover

Program to be verified

Verified proof

Lemmas

???

Tactics

Improved
tactics to
prover

Human insight and intuition
on invariants of reachable states



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 7

Using execution data to help provers
● Programs are often tested before verification

– Testing shows errors quickly
– Verification is expensive in human time

● Execution data is normally thrown away
– What information can be kept for proofs?



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 8

Generating tactics

Theorem
prover

Program annotated for testing by execution

Verified proof

Proof structure and case analysis

Translator from test cases
to prover language

Lemmas Tactics



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 9

Generating lemmas

Theorem
prover

Verified proof

Proof structure and case analysis

Translator from test cases
to prover language

Conjectured invariants

Daikon runtime analysis 
tool

generalizes over executions

Lemmas Tactics

Program annotated for testing by execution



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 10

Outline
● Motivation: execution-assisted theorem provers
● Formal model: IO automaton
● Case study: Lamport's Paxos protocol
● Lemmas: conjectured invariants
● Tactics: proof outline
● Conclusion



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 11

Formal model: IO automaton
● Model for distributed systems

– Labeled (infinite, nondeterministic) state machine
– First order logic to define transitions

[Lynch/Tuttle 89]



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 12

Formal model: IO automaton
● Model for distributed systems

– Labeled (infinite, nondeterministic) state machine
– First order logic to define transitions

● Multiple levels of abstraction
– Abstract specification automaton
– Layered implementation automata Abstract

Implementa
tion

Specifica
tion

Concrete
Implementa

tion

[Lynch/Tuttle 89]



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 13

Verification methods
● Simulation relations for refinement

Abstract
Implementa

tion

Specifica
tion

Concrete
Implementa

tion

Simulation relation

Simulation relation



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 14

Verification methods
● Simulation relations for refinement
● Invariant assertions for implementations

Abstract
Implementa

tion

Specifica
tion

Concrete
Implementa

tion

Invariants

Invariants

Simulation relation

Simulation relation



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 15

IOA language and tools
● IOA interpreter

– Allows simulated execution of one automaton, 
or of a pair for refinement

– User-specified scheduling to resolve 
nondeterminism

● IOA translators to proving languages
– The Larch Prover
– Isabelle/HOL



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 16

Outline
● Motivation: execution-assisted theorem provers
● IO automaton model
● Case study: Lamport's Paxos protocol
● Lemmas: conjectured invariants
● Tactics: proof outline
● Conclusion



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 17

Paxos in IOA
● Specification for consensus

● Globalized implementation using 
ballots and quorums Global1

Consens
us

Concrete
Paxos



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 18

Specification for consensus
automaton Consensus

% Inputs and outputs are externally visible.
signature 
  input init         (i:Node, v:Value)
  input fail         (i:Node)
  output decide      (i:Node, v:Value)
  internal chooseVal (v:Value)

states
  proposed, chosen : Set[Value] := {}
  ...

transitions

  internal chooseVal (v)
  pre
    v  proposed;
    chosen = {}
  eff
    chosen := {v}
  ...

Global1

Consens
us



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 19

Implementation by Global1
Automaton Global1
signature
  input init (i:Node, v:Value)
  input fail (i:Node)
  output decide  (i:Node, v:Value)
  internal internalDecide (b:Ballot)...

states
  succeeded, createdBallots : Set[Ballot]
  ...

internal internalDecide(b:Ballot)
pre
  % The ballot was created.
  b  createdBallots;
  % There was a quorum that voted on the ballot.
   quorum : Set[Node] (quorum  wquorums  
 j : Node (j  quorum  b  voted[j]))
eff
  succeeded := succeeded  {b}
...

Global1

Consensus



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 20

Gameplan for proof

Global1

Consens
us

● Show that Global1 
implements Consensus
– Simulation relation proof

Simulation relation



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 21

Gameplan for proof

Global1

Consens
us

● Show that Global1 
implements Consensus
– Simulation relation proof

● Need invariants on Global1
Invariants

Simulation relation



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 22

Outline
● Motivation: execution-assisted theorem provers
● IO automaton model
● Case study: Lamport's Paxos protocol
● Lemmas: conjectured invariants
● Tactics: proof outline
● Conclusion



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 23

Uses of invariants
● Lemmas in proofs

– Of simulations relations
– Of other invariant statements
– Often needed because the induction hypothesis 

for a proof must be strong enough

Implementa
tion

Specifica
tion

Simulation relation

Invariants



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 24

How to conjecture invariants
● Execute automaton using test cases
● Use Daikon tool on execution data

– Analyzes execution data
– Outputs properties true for observed executions
– Invariants in first order logic

IOA
interpreter DaikonScheduled

automaton

Execution data Conjectured
invariants



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 25

Issues with conjectured invariants
● Unsound

– Statistical analysis reduces false positives
– Use prover to prove conjectured invariants

● Incomplete
– Necessary because search space is infinite

● Needs test cases
– In practice, test cases exist
– We use randomized scheduling
– Trial-and-error execution usually enough



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 26

Conjectured invariants: example

val(nonNull)  proposed

succeeded  createdBallots

0 = size(succeeded  dead) 

0 = size(voted[aNode]  abstained[aNode])

● Paxos case study
– Found 4 of 6 invariants needed for simulation 

relation proof



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 27

What was not found
● Invariants with

– Existential quantifiers
● If a ballot has succeeded, a quorum voted for it

(b  succeeded 
 quorum : Set[Node] (quorum  wquorums  
     n : Node (n  quorum  b  voted[n]))

(val[b] ~= nil  b' < b) 
(val[b'] = val[b]  b' dead)

– Too many boolean clauses
● If a ballot has non-nil value, it is the same value as all 

earlier non-dead ballots



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 28

Outline
● Motivation: execution-assisted theorem provers
● IO automaton model
● Case study: Lamport's Paxos protocol
● Lemmas: conjectured invariants
● Tactics: proof outline
● Conclusion



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 29

Gameplan for proof

Global1

Consens
us

● Show that Global1 
implements Consensus
– Simulation relation proof

Invariants

Simulation relation



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 30

To prove a forward simulation relation
● A implements B if there exists f such that f:

– Is a relation on states[A] and states[B]
– Satisfies a start condition
– Satisfies a step condition

A

B



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 31

To prove a forward simulation relation

witness execution
b b'

a a'
action

ff

pre post

step condition

reachable state

b

a

f

start

start condition

Specification
automaton B

Implementation
automaton A

start state

● A implements B if there exists f such that:

Red = proof obligation



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 32

Forward sim: interpreter support
● Paired execution mode of IOA interpreter 

– For testing forward simulations
– User annotates program for witness executions

● Mechanics of paired execution
– Execute implementation automaton
– Use annotations to drive execution of 

specification automaton
– Check that f holds



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 33

Annotation example
for internal internalDecide (b) do
   if (b  Global1.succeeded) then
     ignore
   elseif (Global1.val[b] = nil) then
     ignore
   ...
   else 
     fire internal chooseVal 
(Global1.val[b].val)
   fi



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 34

Generating prover tactics from tests
● Translate testing annotations into proof scripts

– For start condition
● Pick witness start state b

– For step condition
● Tactic: structural induction on action data type
● Use conditionals ('if') in annotations to perform case splits 
● Pick witness execution 



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 35

Forward sim: step example
% Annotation
for internal internalDecide (b) do
   if (b  Global1.succeeded) then
     ignore
   elseif (Global1.val[b] = nil) then
     ignore
   ...
   else 
     fire internal chooseVal 
(Global1.val[b].val)
   fi

% Proof
prove enabled(internalDecide(b)) =>...% 
Step condition
resume by cases (b  Global1.succeeded)
% case true
  resume by specializing  to []
% case false
  resume by cases (Global1.val[b] = nil)
  % case true
    resume by specializing  to []
...
resume by specializing  to 
[chooseVal(Global1.val[b].val)]



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 36

Outline
● Motivation: execution-assisted theorem provers
● IO automaton model
● Case study: Lamport's Paxos protocol
● Lemmas: conjectured invariants
● Tactics: proof outline
● Conclusion



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 37

Discussion
● Better theorem proving experience

– Less human effort
– Lets designers concentrate on high-level proof

● Designers have concept of high-level proof
– Theorem provers get stuck in details

● Tactics: provide proof structure (82/150 lines)
– What remains is rephrasing of facts

● Lemmas: provide invariants (4/6)
– Missing ones syntactically evident in program code



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 38

Research directions
● Better conjectured invariants

– Analyze IOA code statically for invariant templates
● Find predicates in code, use as left side of implications

● Better proof tactics, more automation
– Which lemmas are used in all IOA proofs?
– What ordering of lemmas?

● E.g., “apply definition of automaton effects only after 
inducting on the action type”



Using Simulated Execution in Verifying Distributed Algorithms VMCAI 2003 39

Conclusion
● Theorem provers need lemmas and tactics

– Execution data can provide some of both
● Lemmas

– Generalize over execution data
● Conjectured invariants

● Tactics
– Annotations for paired testing provides

● Proof outline
● Existential witnesses

● Contribution: easier to use theorem prover


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

