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Bubble Sort

// Return a sorted copy of the argument
double[] bubble_sort(double[] in) {
double[] out = array_copy(in);
for (int x = out.length - 1; x >= 1; x--)
for (int y = x - 1; y >= 1; y--)
if (out[y] > out[y+1])
swap (out[y], out[y+1]);

return out;
}
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Bubble Sort

Faulty (?) Code:

// Return a sorted copy of the argument
double[] bubble_sort(double[] in) {
double[] out = array_copy(in);
for (int x = out.length - 1; x >= 1; x--)
for (int y = x - 1; y >= 1; y--)
if (out[y] > out[y+1])
swap (out[y], out[y+1]);

return out;
}

Fault-revealing 
properties

out[0] = in[0]

out[1] ≤ in[1]



4

Bubble Sort

Faulty Code:

// Return a sorted copy of the argument
double[] bubble_sort(double[] in) {
double[] out = array_copy(in);
for (int x = out.length - 1; x >= 1; x--)
// lower bound should be 0, not 1
for (int y = x - 1; y >= 1; y--)
if (out[y] > out[y+1])
swap (out[y], out[y+1]);

return out;
}

Fault-revealing 
properties

out[0] = in[0] 

out[1] ≤ in[1]
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Targeted Errors

• Latent Errors
– unknown errors

• may be discovered later
• no manifestation

– not discovered by test suite
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Targeted Programs

• Programs that contain latent errors
• Test inputs are easy to generate, but test 

outputs can be hard to compute, e.g.:
– Complex computation programs
– GUI programs

– Programs without formal specification
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Learning from Fixes

Program B:
…
if (store[store.length] > 0);

…

Fixed Program A:
…
print (a[a.size - 1] + “elements”);

…

Program A:
…
print (a[a.size] + “elements”);

…
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Program Description Mapping
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Machine Learning Approach

• Extracts knowledge from a training set
• Creates a model that classifies new 

objects

• Requires a numerical description of the 
samples
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Training a Model
Examples:

out[1] ≤ in[1]

〈1,0,0,2〉
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Training a Model
Examples:

out[1] ≤ in[1]

〈1,0,0,2〉
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Classifying Properties

properties

user program

program analysis

model

machine classifier

fault-revealing
properties

characteristic
extractor

features
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Related Work

• Redundancy in 
source code 
[Xie et al. 2002]
– find an error
– 1.5-2 times 

improvement over 
random sampling

• Relevance:

• same goal
• we have 50 times 

improvement over 
random sampling (for C 
programs)
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Related Work

• [Xie et al. 2002]

• Partial invariant 
violation 
[Hangal et al. 2002]
– is there an error?

• Relevance:

• similar program analysis
• similar goal
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Related Work

• [Xie et al. 2002] 

• [Hangal et al. 2002]
• Clustering of function 

call profiles 
[Dickinson et al. 2001, 
Podgurski et al. 2003]
– find relevant tests
– select faulty 

executions

• Relevance:

• uses machine learning
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Latent Error-Finding Technique

• Abstract properties

• Abstract features
• Generalizes to new 

properties and 
programs

program with
known errors

program
analysis

properties

program with
errors removed

program
analysis

properties

machine learner

model

characteristic
extractor

features

characteristic
extractor

features
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Model

• A function:
– {set of features} " {fault-revealing, non-fault-revealing}

• Examples:
– Linear combination functions

– If-Then rules
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Tools Required for 
Fault Invariant Classifier

• Program Property Extractor
– Daikon: Dynamic analysis tool

• Property to Characteristic Vector 
Converter

• Machine Learning
– Support Vector Machines (SVMfu)

• technique is equally applicable to static 
and dynamic analysis

program with
known errors

program
analysis

properties

program with
errors removed

program
analysis

properties

machine learner

model

characteristic
extractor

features

characteristic
extractor

features
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Daikon: Program Property Extractor

• Daikon
– Dynamic analysis tool
– Reports properties that are true over program 

executions

– Examples:
• myPositiveInt > 0
• length = data.size
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Characteristic Vector Extractor

• Daikon uses Java objects to represent 
properties

• Converter extracts all possible numeric 
information from those objects
– # of variables e.g.  x>5"1  x∈ array"2

– is inequality? e.g.  x>5"1  x∈ array"0
– involves an array? e.g.  x>5"0  x∈ array"1

• Total: 388 features
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Support Vector Machine Model

• Predictive power
• But not explicative power
• Consists of thousands of support vectors 

that define a separating area of the search 
space
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Subject Programs

• 12 Programs
– C and Java programs

– Largest: 9500 lines
– 373 errors (132 seeded, 241 real)

• with corrected versions

– Authors (at least 132):
• Students
• Industry
• Researchers
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Accuracy Experiment

• Goal:
– Test if machine learning can extrapolate 

knowledge from some programs to others

• Train on errors from all but one program
• Classify properties for each version of that 

one program
• Compare to expected results
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Measurements and Definitions

• Fault-revealing property:
– property of an erroneous program but not of 

that program with the error corrected
– indicative of an error

• Brevity: 
– average number of properties one must 

examine to find a fault-revealing property

– best possible brevity is 1
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Accuracy Experiment Results

• C programs (single-error)
– brevity = 2.2

– improvement = 49.6 times

• Java programs (mostly multiple-error)
– brevity = 1.7
– improvement = 4.8 times
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Fault Invariant Classifier 
Usability Study

• Would properties identified by the fault 
invariant classifier lead a programmer to 
errors in code?

• Preliminary experimentation:
– 1 programmer’s evaluation
– 2 programs (41 errors, 410 properties)
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Usability Study Results

• Replace (32 errors)
– 68% of properties reported fault-revealing 

would lead a programmer to the error

• Schedule (9 errors)
– 58% of properties reported fault-revealing 

would lead a programmer to the error

The majority of the reported properties 
were effective in indicating errors
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Conclusion

• Designed a technique for finding latent errors

• Implemented a fully automated Fault Invariant 
Classifier

• Fault Invariant Classifier revealed fault-revealing 
properties with brevity around 2

• Most of the fault-revealing properties are 
expected to lead a programmer to the error

• Overall, examining 3 properties is expected to 
lead a programmer to the error in our tests
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Backup Slides

• Works Cited
• Explicative Machine Learning Model
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Explicative Machine Learning 
Model

• C5.0 decision tree machine learner
• Examples:
• Based on large number of samples and neither 

an equality nor a linear relationship of three 
variables # likely fault-revealing

• Sequences contains no duplicates or always 
contains an element # likely fault-revealing
– No field accesses # even more likely fault-revealing


