
Finding Latent Code Errors
via Machine Learning

over Program Executions

Yuriy Brun
University of Southern

California

Michael D. Ernst
Massachusetts Institute

of Technology

2

Bubble Sort

// Return a sorted copy of the argument
double[] bubble_sort(double[] in) {
double[] out = array_copy(in);
for (int x = out.length - 1; x >= 1; x--)
for (int y = x - 1; y >= 1; y--)
if (out[y] > out[y+1])
swap (out[y], out[y+1]);

return out;
}

3

Bubble Sort

Faulty (?) Code:

// Return a sorted copy of the argument
double[] bubble_sort(double[] in) {
double[] out = array_copy(in);
for (int x = out.length - 1; x >= 1; x--)
for (int y = x - 1; y >= 1; y--)
if (out[y] > out[y+1])
swap (out[y], out[y+1]);

return out;
}

Fault-revealing
properties

out[0] = in[0]

out[1] ≤ in[1]

4

Bubble Sort

Faulty Code:

// Return a sorted copy of the argument
double[] bubble_sort(double[] in) {
double[] out = array_copy(in);
for (int x = out.length - 1; x >= 1; x--)
// lower bound should be 0, not 1
for (int y = x - 1; y >= 1; y--)
if (out[y] > out[y+1])
swap (out[y], out[y+1]);

return out;
}

Fault-revealing
properties

out[0] = in[0]

out[1] ≤ in[1]

5

Outline

• Intuition for Fault Detection
• Latent Error Finding Technique
• Fault Invariant Classifier Implementation
• Accuracy Experiment
• Usability Experiment
• Conclusion

6

Outline

!Intuition for Fault Detection
• Latent Error Finding Technique
• Fault Invariant Classifier Implementation
• Accuracy Experiment
• Usability Experiment
• Conclusion

7

Targeted Errors

• Latent Errors
– unknown errors

• may be discovered later
• no manifestation

– not discovered by test suite

8

Targeted Programs

• Programs that contain latent errors
• Test inputs are easy to generate, but test

outputs can be hard to compute, e.g.:
– Complex computation programs
– GUI programs

– Programs without formal specification

9

Learning from Fixes

Program B:
…
if (store[store.length] > 0);

…

Fixed Program A:
…
print (a[a.size - 1] + “elements”);

…

Program A:
…
print (a[a.size] + “elements”);

…

10

Outline

• Intuition for Fault Detection
!Latent Error Finding Technique
• Fault Invariant Classifier Implementation
• Accuracy Experiment
• Usability Experiment
• Conclusion

11

Program Description Mapping

12

Machine Learning Approach

• Extracts knowledge from a training set
• Creates a model that classifies new

objects

• Requires a numerical description of the
samples

13

Training a Model
Examples:

out[1] ≤ in[1]

〈1,0,0,2〉

14

Training a Model
Examples:

out[1] ≤ in[1]

〈1,0,0,2〉

15

Classifying Properties

properties

user program

program analysis

model

machine classifier

fault-revealing
properties

characteristic
extractor

features

16

Related Work

• Redundancy in
source code
[Xie et al. 2002]
– find an error
– 1.5-2 times

improvement over
random sampling

• Relevance:

• same goal
• we have 50 times

improvement over
random sampling (for C
programs)

17

Related Work

• [Xie et al. 2002]

• Partial invariant
violation
[Hangal et al. 2002]
– is there an error?

• Relevance:

• similar program analysis
• similar goal

18

Related Work

• [Xie et al. 2002]

• [Hangal et al. 2002]
• Clustering of function

call profiles
[Dickinson et al. 2001,
Podgurski et al. 2003]
– find relevant tests
– select faulty

executions

• Relevance:

• uses machine learning

19

Latent Error-Finding Technique

• Abstract properties

• Abstract features
• Generalizes to new

properties and
programs

program with
known errors

program
analysis

properties

program with
errors removed

program
analysis

properties

machine learner

model

characteristic
extractor

features

characteristic
extractor

features

20

Model

• A function:
– {set of features} " {fault-revealing, non-fault-revealing}

• Examples:
– Linear combination functions

– If-Then rules

21

Outline

• Intuition for Fault Detection
• Latent Error Finding Technique
!Fault Invariant Classifier Implementation
• Accuracy Experiment
• Usability Experiment
• Conclusion

22

Tools Required for
Fault Invariant Classifier

• Program Property Extractor
– Daikon: Dynamic analysis tool

• Property to Characteristic Vector
Converter

• Machine Learning
– Support Vector Machines (SVMfu)

• technique is equally applicable to static
and dynamic analysis

program with
known errors

program
analysis

properties

program with
errors removed

program
analysis

properties

machine learner

model

characteristic
extractor

features

characteristic
extractor

features

23

Daikon: Program Property Extractor

• Daikon
– Dynamic analysis tool
– Reports properties that are true over program

executions

– Examples:
• myPositiveInt > 0
• length = data.size

24

Characteristic Vector Extractor

• Daikon uses Java objects to represent
properties

• Converter extracts all possible numeric
information from those objects
– # of variables e.g. x>5"1 x∈ array"2

– is inequality? e.g. x>5"1 x∈ array"0
– involves an array? e.g. x>5"0 x∈ array"1

• Total: 388 features

25

Support Vector Machine Model

• Predictive power
• But not explicative power
• Consists of thousands of support vectors

that define a separating area of the search
space

26

Outline

• Intuition for Fault Detection
• Latent Error Finding Technique
• Fault Invariant Classifier Implementation
!Accuracy Experiment
• Usability Experiment
• Conclusion

27

Subject Programs

• 12 Programs
– C and Java programs

– Largest: 9500 lines
– 373 errors (132 seeded, 241 real)

• with corrected versions

– Authors (at least 132):
• Students
• Industry
• Researchers

28

Accuracy Experiment

• Goal:
– Test if machine learning can extrapolate

knowledge from some programs to others

• Train on errors from all but one program
• Classify properties for each version of that

one program
• Compare to expected results

29

Measurements and Definitions

• Fault-revealing property:
– property of an erroneous program but not of

that program with the error corrected
– indicative of an error

• Brevity:
– average number of properties one must

examine to find a fault-revealing property

– best possible brevity is 1

30

Accuracy Experiment Results

• C programs (single-error)
– brevity = 2.2

– improvement = 49.6 times

• Java programs (mostly multiple-error)
– brevity = 1.7
– improvement = 4.8 times

31

Outline

• Intuition for Fault Detection
• Latent Error Finding Technique
• Fault Invariant Classifier Implementation
• Accuracy Experiment
!Usability Experiment
• Conclusion

32

Fault Invariant Classifier
Usability Study

• Would properties identified by the fault
invariant classifier lead a programmer to
errors in code?

• Preliminary experimentation:
– 1 programmer’s evaluation
– 2 programs (41 errors, 410 properties)

33

Usability Study Results

• Replace (32 errors)
– 68% of properties reported fault-revealing

would lead a programmer to the error

• Schedule (9 errors)
– 58% of properties reported fault-revealing

would lead a programmer to the error

The majority of the reported properties
were effective in indicating errors

34

Outline

• Intuition for Fault Detection
• Latent Error Finding Technique
• Fault Invariant Classifier Implementation
• Accuracy Experiment
• Usability Experiment
!Conclusion

35

Conclusion

• Designed a technique for finding latent errors

• Implemented a fully automated Fault Invariant
Classifier

• Fault Invariant Classifier revealed fault-revealing
properties with brevity around 2

• Most of the fault-revealing properties are
expected to lead a programmer to the error

• Overall, examining 3 properties is expected to
lead a programmer to the error in our tests

36

Backup Slides

• Works Cited
• Explicative Machine Learning Model

37

Works Cited
[Dickinson et al. 2001] W. Dickinson, D. Leon, and A. Podgurski. Finding failures by clust

execution profiles. In ICSE, pages 339–348, May 2001.
[Hangal at al. 2002] S. Hangal and M. S. Lam. Tracking down software bugs using autom

detection. In ICSE, pages 291–301, May 2002.
[Podgurski at al. 2003] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, an

Automated support for classifying software failure reports. In ICSE, pages
465–475, May 2003.

[Xie et al. 2002] Y. Xie and D. Engler. Using redundancies to find errors. In FSE, pages 5
Nov. 2002.

38

Explicative Machine Learning
Model

• C5.0 decision tree machine learner
• Examples:
• Based on large number of samples and neither

an equality nor a linear relationship of three
variables # likely fault-revealing

• Sequences contains no duplicates or always
contains an element # likely fault-revealing
– No field accesses # even more likely fault-revealing

