
Ernst, ICSE 99, page 1

Dynamically Detecting
Likely Program Invariants

Michael Ernst, Jake Cockrell,

Bill Griswold (UCSD), and David Notkin
University of Washington

Department of Computer Science and Engineering

http://www.cs.washington.edu/homes/mernst/

Ernst, ICSE 99, page 2

Overview

Goal: recover invariants from programs

Technique: run the program, examine values

Artifact: Daikon

Results:

Outline:

• recovered formal specifications

• aided in a software modification task

• motivation
• techniques
• future work

Ernst, ICSE 99, page 3

Goal: recover invariants

Detect invariants like those in assert statements

• x > abs(y)

• x = 16*y + 4*z + 3

• array a contains no duplicates

• for each node n, n = n.child.parent

• graph g is acyclic

Ernst, ICSE 99, page 4

Uses for invariants

Write better programs [Liskov 86]

Documentation

Convert to assert

Maintain invariants to avoid introducing bugs

Validate test suite: value coverage

Locate exceptional conditions

Higher-level profile-directed compilation
[Calder 98]

Bootstrap proofs [Wegbreit 74, Bensalem 96]

Ernst, ICSE 99, page 5

Experiment 1:
recover formal specifications

Example: Program 15.1.1
from The Science of Programming [Gries 81]

// Sum array b of length n into variable s.

i := 0; s := 0;
while i  n do

{ s := s+b[i]; i := i+1 }

Precondition: n  0

Postcondition: s = (j: 0  j < n : b[j])

Loop invariant: 0  i  n and s = (j: 0  j < i : b[j])

Ernst, ICSE 99, page 6

Test suite for program 15.1.1

100 randomly-generated arrays

• Length uniformly distributed from 7 to 13

• Elements uniformly distributed from -100 to 100

Ernst, ICSE 99, page 7

Inferred invariants
15.1.1:::BEGIN (100 samples)

N = size(B) (7 values)

N in [7..13] (7 values)

B (100 values)

All elements in [-100..100] (200 values)

15.1.1:::END (100 samples)

N = I = N_orig = size(B) (7 values)

B = B_orig (100 values)

S = sum(B) (96 values)

N in [7..13] (7 values)

B (100 values)

All elements in [-100..100] (200 values)

Ernst, ICSE 99, page 8

Inferred loop invariants

15.1.1:::LOOP (1107 samples)

N = size(B) (7 values)

S = sum(B[0..I-1]) (96 values)

N in [7..13] (7 values)

I in [0..13] (14 values)

I <= N (77 values)

B (100 values)

All elements in [-100..100] (200 values)

B[0..I-1] (985 values)

All elements in [-100..100] (200 values)

Ernst, ICSE 99, page 9

Ways to obtain invariants

• Programmer-supplied

• Static analysis: examine the program text
[Cousot 77, Gannod 96]

• properties are guaranteed to be true

• pointers are intractable in practice

• Dynamic analysis: run the program

Ernst, ICSE 99, page 10

Dynamic invariant detection

Look for patterns in values the program computes:

• Instrument the program to write data trace files

• Run the program on a test suite

• Offline invariant engine reads data trace files,

checks for a collection of potential invariants

Invariants

Instrumented
program

Original
program

Test suite

RunInstrument

Data trace
database

Detect

invariants

Ernst, ICSE 99, page 11

Running the program

Requires a test suite

• standard test suites are adequate

• relatively insensitive to test suite

No guarantee of completeness or soundness

• useful nonetheless

Ernst, ICSE 99, page 12

Sample invariants

x,y,z are variables; a,b,c are constants

Numbers:

• unary: x = a, a  x  b, x  a (mod b)

• n-ary: x  y, x = ay + bz + c, x = max(y, z)

Sequences:

• unary: sorted, invariants over all elements

• with scalar: membership

• with sequence: subsequence, ordering

Ernst, ICSE 99, page 13

Checking invariants

For each potential invariant:

• quickly determine constants

(e.g., a and b in y = ax + b)

• stop checking once it is falsified

This is inexpensive

Ernst, ICSE 99, page 14

Performance

Runtime growth:

• quadratic in number of variables at a program point

(linear in number of invariants checked/discovered)

• linear in number of samples or values (test suite size)

• linear in number of program points

Absolute runtime: a few minutes per procedure

• 10,000 calls, 70 variables, instrument entry and exit

Ernst, ICSE 99, page 15

Statistical checks

Check hypothesized distribution

To show x  0 for v values of x in range of size r,

probability of no zeroes is

Range limits (e.g., x  22):

• more samples than neighbors (clipped to that value)

• same number of samples as neighbors (uniform

distribution)

v

r










1
1

Ernst, ICSE 99, page 16

Derived variables

Variables not appearing in source text

• array: length, sum, min, max

• array and scalar: element at index, subarray

• number of calls to a procedure

Enable inference of more complex relationships

Staged derivation and invariant inference

• avoid deriving meaningless values

• avoid computing tautological invariants

Ernst, ICSE 99, page 17

Experiment 2: C code
lacking explicit invariants

563-line C program: regexp search & replace
[Hutchins 94, Rothermel 98]

Task: modify to add Kleene +

Use both detected invariants and traditional tools

Ernst, ICSE 99, page 18

Experiment 2 invariant uses

Contradicted some maintainer expectations

anticipated lj < j in makepat

Revealed a bug

when lastj = *j in stclose, array bounds error

Explicated data structures

regexp compiled form (a string)

Ernst, ICSE 99, page 19

Experiment 2 invariant uses

Showed procedures used in limited ways

makepat: start = 0 and delim = ’\0’

Demonstrated test suite inadequacy

calls(in_set_2) = calls(stclose)

Changes in invariants validated program changes

stclose: *j = *jorig+1 plclose: *j  *jorig+2

Ernst, ICSE 99, page 20

Experiment 2 conclusions

Invariants:

• effectively summarize value data

• support programmer’s own inferences

• lead programmers to think in terms of invariants

• provide serendipitous information

Useful tools:

• trace database (supports queries)

• invariant differencer

Ernst, ICSE 99, page 21

Future work

Logics:

• Disjunctions: p = NULL or *p > i

• Predicated invariants: if condition then invariant

• Temporal invariants

• Global invariants (multiple program points)

• Existential quantifiers

Domains: recursive (pointer-based) data structures

• Local invariants

• Global invariants: structure [Hendren 92], value

Ernst, ICSE 99, page 22

More future work

User interface

• control over instrumentation

• display and manipulation of invariants

Experimental evaluation

• apply to a variety of tasks

• apply to more and bigger programs

• users wanted! (Daikon works on C, C++, Java, Lisp)

Ernst, ICSE 99, page 23

Related work

Dynamic inference

• inductive logic programming [Bratko 93]

• program spectra [Reps 97]

• finite state machines [Boigelot 97, Cook 98]

Static inference [Jeffords 98]

• checking specifications [Detlefs 96, Evans 96, Jacobs 98]

• specification extension [Givan 96, Hendren 92]

• etc. [Henry 90, Ward 96]

Ernst, ICSE 99, page 24

Conclusions

Dynamic invariant detection is feasible

• Prototype implementation

Dynamic invariant detection is effective

• Two experiments provide preliminary support

Dynamic invariant detection is a challenging

but promising area for future research

