
Michael Ernst, page 1

Improving Test Suites via
Operational Abstraction

Michael Ernst

MIT Lab for Computer Science

http://pag.lcs.mit.edu/~mernst/

Joint work with
Michael Harder, Jeff Mellen, and Benjamin Morse

Michael Ernst, page 2

Creating test suites

Goal: small test suites that detect faults well

Larger test suites are usually more effective

• Evaluation must account for size

Fault detection cannot be predicted

• Use proxies, such as code coverage

Michael Ernst, page 3

Test case selection

Example: creating a regression test suite

Assumes a source of test cases

• Created by a human

• Generated at random or from a grammar

• Generated from a specification

• Extracted from observed usage

Michael Ernst, page 4

Contributions

Operational difference technique for selecting

test cases, based on observed behavior

• Outperforms (and complements) other

techniques (see paper for details)

• No oracle, static analysis, or specification

Stacking and area techniques for comparing

test suites

• Corrects for size, permitting fair comparison

Michael Ernst, page 5

Outline

Operational difference technique for selecting

test cases

Generating operational abstractions

Stacking and area techniques for comparing

test suites

Evaluation of operational difference technique

Conclusion

Michael Ernst, page 6

Operational difference
technique

Idea: Add a test case c to a test suite S if c
exercises behavior that S does not

Code coverage does this in the textual domain

We extend this to the semantic domain

Need to compare run-time program behaviors

• Operational abstraction: program properties

• x > y

• a[] is sorted

Michael Ernst, page 7

Test suite generation
or augmentation

Idea: Compare operational abstractions induced

by different test suites

Given: a source of test cases; an initial test suite

Loop:

• Add a candidate test case

• If operational abstraction changes, retain the case

• Stopping condition: failure of a few candidates

Michael Ernst, page 8

The operational difference
technique is effective

Operational difference suites

• are smaller

• have better fault detection

than branch coverage suites

(in our evaluation; see paper for details)

Michael Ernst, page 9

Example of test suite
generation

Program under test: abs (absolute value)

Test cases: 5, 1, 4, -1, 6, -3, 0, 7, -8, 3, …

Suppose an operational abstraction contains:

• var = constant

• var ≥ constant

• var ≤ constant

• var = var

• property  property

Michael Ernst, page 10

Considering test case 5

Initial test suite: { }

Initial operational abstraction for { }: Ø

Candidate test case: 5

New operational abstraction for { 5 }:

• Precondition: arg = 5

• Postconditions: arg = return

New operational abstraction is different,

so retain the test case

Michael Ernst, page 11

Considering test case 1

Operational abstraction for { 5 }:

• Pre: arg = 5

• Post: arg = return

Candidate test case: 1

New operational abstraction for { 5, 1 }:

• Pre: arg ≥ 1

• Post: arg = return

Retain the test case

Michael Ernst, page 12

Considering test case 4

Operational abstraction for { 5, 1 }:

• Pre: arg ≥ 1

• Post: arg = return

Candidate test case: 4

New operational abstraction for { 5, 1, 4 }:

• Pre: arg ≥ 1

• Post: arg = return

Discard the test case

Michael Ernst, page 13

Considering test case -1

Operational abstraction for { 5, 1 }:
• Pre: arg ≥ 1

• Post: arg = return

Candidate test case: -1

New operational abstraction for { 5, 1, -1 }:
• Pre: arg ≥ -1

• Post: arg ≥ 1  (arg = return)

arg = -1  (arg = -return)

return ≥ 1

Retain the test case

Michael Ernst, page 14

Considering test case -6

Operational abstraction for { 5, 1, -1 }:
• Pre: arg ≥ -1

• Post: arg ≥ 1  (arg = return)

arg = -1  (arg = -return)

return ≥ 1

Candidate test case: -6

New operational abstraction for { 5, 1, -1, -6 }:
• Pre: Ø

• Post: arg ≥ 1  (arg = return)

arg ≤ -1  (arg = -return)

return ≥ 1

Retain the test case

Michael Ernst, page 15

Considering test case -3

Operational abstraction for { 5, 1, -1, -6 }:
• Post: arg ≥ 1  (arg = return)

arg ≤ -1  (arg = -return)

return ≥ 1

Test case: -3

New operational abstraction for { 5, 1, -1, 6, -3 }:
• Post: arg ≥ 1  (arg = return)

arg ≤ -1  (arg = -return)

return ≥ 1

Discard the test case

Michael Ernst, page 16

Considering test case 0

Operational abstraction for { 5, 1, -1, -6 }:
• Post: arg ≥ 1  (arg = return)

arg ≤ -1  (arg = -return)

return ≥ 1

Test case: 0

New operational abstraction for {5, 1, -1, -6, 0 }:
• Post: arg ≥ 0  (arg = return)

arg ≤ 0  (arg = -return)

return ≥ 0

Retain the test case

Michael Ernst, page 17

Considering test case 7

Operational abstraction for { 5, 1, -1, -6, 0 }:
• Post: arg ≥ 0  (arg = return)

arg ≤ 0  (arg = -return)

return ≥ 0

Candidate test case: 7

New operational abstraction for { 5, 1, -1, -6, 0, 7 }:
• Post: arg ≥ 0  (arg = return)

arg ≤ 0  (arg = -return)

return ≥ 0

Discard the test case

Michael Ernst, page 18

Considering test case -8

Operational abstraction for { 5, 1, -1, -6, 0 }:
• Post: arg ≥ 0  (arg = return)

arg ≤ 0  (arg = -return)

return ≥ 0

Candidate test case: -8

New operational abstraction for { 5, 1, -1, -6, 0, -8 }:
• Post: arg ≥ 0  (arg = return)

arg ≤ 0  (arg = -return)

return ≥ 0

Discard the test case

Michael Ernst, page 19

Considering test case 3

Operational abstraction for { 5, 1, -1, -6, 0 }:
• Post: arg ≥ 0  (arg = return)

arg ≤ 0  (arg = -return)

return ≥ 0

Candidate test case: 3

New operational abstraction for { 5, 1, -1, -6, 0, 3 }:
• Post: arg ≥ 0  (arg = return)

arg ≤ 0  (arg = -return)

return ≥ 0

Discard the test case; third consecutive failure

Michael Ernst, page 20

Minimizing test suites

Given: a test suite

For each test case in the suite:

Remove the test case if doing so does not change

the operational abstraction

Michael Ernst, page 21

Outline

Operational difference technique for selecting

test cases

Generating operational abstractions

Stacking and area techniques for comparing

test suites

Evaluation of operational difference technique

Conclusion



Michael Ernst, page 22

Dynamic invariant detection

Goal: recover invariants from programs

Technique: run the program, examine values

Artifact: Daikon

http://pag.lcs.mit.edu/daikon

Experiments demonstrate accuracy, usefulness

Michael Ernst, page 23

Goal: recover invariants

Detect invariants (as in asserts or specifications)

• x > abs(y)

• x = 16*y + 4*z + 3

• array a contains no duplicates

• for each node n, n = n.child.parent

• graph g is acyclic

• if ptr  null then *ptr > i

Michael Ernst, page 24

Uses for invariants

• Write better programs [Gries 81, Liskov 86]

• Document code

• Check assumptions: convert to assert

• Maintain invariants to avoid introducing bugs

• Locate unusual conditions

• Validate test suite: value coverage

• Provide hints for higher-level profile-directed

compilation [Calder 98]

• Bootstrap proofs [Wegbreit 74, Bensalem 96]

Michael Ernst, page 25

Ways to obtain invariants

• Programmer-supplied

• Static analysis: examine the program text
[Cousot 77, Gannod 96]

• properties are guaranteed to be true

• pointers are intractable in practice

• Dynamic analysis: run the program

• complementary to static techniques

Michael Ernst, page 26

Dynamic invariant detection

Look for patterns in values the program computes:

• Instrument the program to write data trace files

• Run the program on a test suite

• Invariant engine reads data traces, generates potential

invariants, and checks them

Invariants

Instrumented
program

Original
program

Test suite

RunInstrument

Data trace
database

Detect

invariants

Michael Ernst, page 27

Checking invariants

For each potential invariant:

• instantiate
(determine constants like a and b in y = ax + b)

• check for each set of variable values

• stop checking when falsified

This is inexpensive: many invariants, each cheap

Michael Ernst, page 28

Improving invariant detection

Add desired invariants: implicit values,

unused polymorphism

Eliminate undesired invariants: unjustified

properties, redundant invariants,

incomparable variables

Traverse recursive data structures

Conditionals: compute invariants over

subsets of data (if x>0 then yz)

Michael Ernst, page 29

Outline

Operational difference technique for selecting

test cases

Generating operational abstractions

Stacking and area techniques for comparing

test suites

Evaluation of operational difference technique

Conclusion



Michael Ernst, page 30

Comparing test suites

Key metric: fault detection

• percentage of faults detected by a test suite

Correlated metric: test suite size

• number of test cases

• run time

Test suite comparisons must control for size

Michael Ernst, page 31

Test suite efficiency

Efficiency = (fault detection)/(test suite size)

Which test suite generation technique is better?

fa
u

lt
 d

e
te

c
ti
o

n

test suite size

S2

S1

Michael Ernst, page 32

Different size suites are
incomparable

A technique induces a curve:

How can we tell which is the true curve?

Michael Ernst, page 33

Comparing test suite
generation techiques

Each technique induces a curve

Compare the curves, not specific points

Approach: compare area under the curve

• Compares the techniques at many sizes

• Cannot predict the size users will want

Michael Ernst, page 34

Approximating the curves
(“stacking”)

Given a test budget (in suite execution time),

generate a suite that runs for that long

To reduce in size:

select a random subset

To increase in size:

combine independent suites

T1

T2
S2

S2'

S1

S1'

fa
u

lt
 d

e
te

c
ti
o

n

size

Michael Ernst, page 35

Test suite generation
comparison

1. Approximate the curves

2. Report ratios of

areas under curves T1

T2
S2

S2'

S1

S1'

fa
u

lt
 d

e
te

c
ti
o

n

size

Michael Ernst, page 36

Outline

Operational difference technique for selecting

test cases

Generating operational abstractions

Stacking and area techniques for comparing

test suites

Evaluation of operational difference technique

Conclusion



Michael Ernst, page 37

Evaluation of operational
difference technique

• It ought to work: Correlating operational

abstractions with fault detection

• It does work: Measurements of fault

detection of generated suites

Michael Ernst, page 38

Subject programs

8 C programs

• seven 300-line programs, one 6000-line program

Each program comes with

• pool of test cases (1052 – 13585)

• faulty versions (7 – 34)

• statement, branch, and def-use coverage suites

Michael Ernst, page 39

Improving operational
abstractions improves tests
Let the ideal operational abstraction be that

generated by all available test cases

Operational coverage = closeness to the ideal

• Operational coverage is correlated with fault
detection

• Holding constant cases, calls, statement coverage,
branch coverage

• Same result for 100% statement/branch coverage

Michael Ernst, page 40

Generated suites

Relative fault detection (adjusted by using the
stacking technique):

Def-use coverage: 1.73

Branch coverage: 1.66

Operational difference: 1.64

Statement coverage: 1.53

Random: 1.00

Similar results for augmentation,
minimization

Michael Ernst, page 41

Augmentation

Relative fault detection (via area technique):

Random: 1.00

Branch coverage: 1.70

Operational difference: 1.72

Branch + operational diff.: 2.16

Michael Ernst, page 42

Operational difference
complements structural

Best technique
Total

Op. Diff. equal Branch

CFG

changes
9 11 9 29

Non-CFG

changes
56 54 24 134

Total 65 65 33 163

Michael Ernst, page 43

Outline

Operational difference technique for selecting

test cases

Generating operational abstractions

Stacking and area techniques for comparing

test suites

Evaluation of operational difference technique

Conclusion

Michael Ernst, page 44

Future work

How good is the stacking approximation?

How do bugs in the programs affect the

operational difference technique?

Michael Ernst, page 45

Contributions

Stacking and area techniques for comparing test

suites

• Control for test suite size

Operational difference technique for automatic test

case selection

• Based on observed program behavior

• Outperforms statement and branch coverage

• Complementary to structural techniques

• Works even at 100% code coverage

• No oracle, static analysis, or specification required

