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Creating test suites

Goal: small test suites that detect faults well

Larger test suites are usually more effective

• Evaluation must account for size

Fault detection cannot be predicted

• Use proxies, such as code coverage
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Test case selection

Example:  creating a regression test suite

Assumes a source of test cases

• Created by a human

• Generated at random or from a grammar

• Generated from a specification

• Extracted from observed usage
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Contributions

Operational difference technique for selecting 

test cases, based on observed behavior

• Outperforms (and complements) other 

techniques (see paper for details)

• No oracle, static analysis, or specification

Stacking and area techniques for comparing 

test suites

• Corrects for size, permitting fair comparison
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Outline

Operational difference technique for selecting 

test cases

Generating operational abstractions

Stacking and area techniques for comparing 

test suites

Evaluation of operational difference technique

Conclusion
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Operational difference 
technique

Idea:  Add a test case c to a test suite S if c
exercises behavior that S does not

Code coverage does this in the textual domain

We extend this to the semantic domain

Need to compare run-time program behaviors

• Operational abstraction:  program properties

• x > y

• a[] is sorted
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Test suite generation
or augmentation

Idea:  Compare operational abstractions induced 

by different test suites

Given:  a source of test cases; an initial test suite

Loop:

• Add a candidate test case

• If operational abstraction changes, retain the case

• Stopping condition:  failure of a few candidates
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The operational difference 
technique is effective

Operational difference suites

• are smaller

• have better fault detection

than branch coverage suites

(in our evaluation; see paper for details)
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Example of test suite 
generation

Program under test:  abs (absolute value)

Test cases:  5, 1, 4, -1, 6, -3, 0, 7, -8, 3, …

Suppose an operational abstraction contains:

• var = constant

• var ≥ constant

• var ≤ constant

• var = var

• property  property
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Considering test case 5

Initial test suite: { }

Initial operational abstraction for { }:  Ø

Candidate test case:  5

New operational abstraction for { 5 }:

• Precondition:  arg = 5

• Postconditions:  arg = return

New operational abstraction is different,

so retain the test case
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Considering test case 1

Operational abstraction for { 5 }:

• Pre:  arg = 5

• Post: arg = return

Candidate test case:  1

New operational abstraction for { 5, 1 }:

• Pre:  arg ≥ 1

• Post: arg = return

Retain the test case
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Considering test case 4

Operational abstraction for { 5, 1 }:

• Pre:   arg ≥ 1

• Post:  arg = return

Candidate test case:  4

New operational abstraction for { 5, 1, 4 }:

• Pre:   arg ≥ 1

• Post:  arg = return

Discard the test case



Michael Ernst, page 13

Considering test case -1

Operational abstraction for { 5, 1 }:
• Pre:  arg ≥ 1

• Post: arg = return

Candidate test case:  -1

New operational abstraction for { 5, 1, -1 }:
• Pre: arg ≥ -1

• Post: arg ≥ 1  (arg = return)

arg = -1  (arg = -return)

return ≥ 1

Retain the test case
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Considering test case -6

Operational abstraction for { 5, 1, -1 }:
• Pre: arg ≥ -1

• Post: arg ≥ 1  (arg = return)

arg = -1  (arg = -return)

return ≥ 1

Candidate test case:  -6

New operational abstraction for { 5, 1, -1, -6 }:
• Pre: Ø

• Post: arg ≥ 1  (arg = return)

arg ≤ -1  (arg = -return)

return ≥ 1

Retain the test case
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Considering test case -3

Operational abstraction for { 5, 1, -1, -6 }:
• Post: arg ≥ 1  (arg = return)

arg ≤ -1  (arg = -return)

return ≥ 1

Test case:  -3

New operational abstraction for { 5, 1, -1, 6, -3 }:
• Post: arg ≥ 1  (arg = return)

arg ≤ -1  (arg = -return)

return ≥ 1

Discard the test case
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Considering test case 0

Operational abstraction for { 5, 1, -1, -6 }:
• Post: arg ≥ 1  (arg = return)

arg ≤ -1  (arg = -return)

return ≥ 1

Test case:  0

New operational abstraction for {5, 1, -1, -6, 0 }:
• Post: arg ≥ 0  (arg = return)

arg ≤ 0  (arg = -return)

return ≥ 0

Retain the test case
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Considering test case 7

Operational abstraction for { 5, 1, -1, -6, 0 }:
• Post: arg ≥ 0  (arg = return)

arg ≤ 0  (arg = -return)

return ≥ 0

Candidate test case:  7

New operational abstraction for { 5, 1, -1, -6, 0, 7 }:
• Post: arg ≥ 0  (arg = return)

arg ≤ 0  (arg = -return)

return ≥ 0

Discard the test case
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Considering test case -8

Operational abstraction for { 5, 1, -1, -6, 0 }:
• Post: arg ≥ 0  (arg = return)

arg ≤ 0  (arg = -return)

return ≥ 0

Candidate test case:  -8

New operational abstraction for { 5, 1, -1, -6, 0, -8 }:
• Post: arg ≥ 0  (arg = return)

arg ≤ 0  (arg = -return)

return ≥ 0

Discard the test case
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Considering test case 3

Operational abstraction for { 5, 1, -1, -6, 0 }:
• Post: arg ≥ 0  (arg = return)

arg ≤ 0  (arg = -return)

return ≥ 0

Candidate test case:  3

New operational abstraction for { 5, 1, -1, -6, 0, 3 }:
• Post: arg ≥ 0  (arg = return)

arg ≤ 0  (arg = -return)

return ≥ 0

Discard the test case; third consecutive failure
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Minimizing test suites

Given:  a test suite

For each test case in the suite:

Remove the test case if doing so does not change 

the operational abstraction
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Outline

Operational difference technique for selecting 

test cases

Generating operational abstractions

Stacking and area techniques for comparing 

test suites

Evaluation of operational difference technique

Conclusion


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Dynamic invariant detection

Goal:  recover invariants from programs

Technique:  run the program, examine values

Artifact:  Daikon

http://pag.lcs.mit.edu/daikon

Experiments demonstrate accuracy, usefulness
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Goal:  recover invariants

Detect invariants (as in asserts or specifications)

• x > abs(y)

• x = 16*y + 4*z + 3

• array a contains no duplicates

• for each node n, n = n.child.parent

• graph g is acyclic

• if  ptr  null then  *ptr > i
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Uses for invariants

• Write better programs [Gries 81, Liskov 86]

• Document code

• Check assumptions:  convert to assert

• Maintain invariants to avoid introducing bugs

• Locate unusual conditions 

• Validate test suite:  value coverage

• Provide hints for higher-level profile-directed 

compilation [Calder 98]

• Bootstrap proofs [Wegbreit 74, Bensalem 96]
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Ways to obtain invariants

• Programmer-supplied

• Static analysis:  examine the program text 
[Cousot 77, Gannod 96]

• properties are guaranteed to be true

• pointers are intractable in practice

• Dynamic analysis:  run the program

• complementary to static techniques
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Dynamic invariant detection

Look for patterns in values the program computes:

• Instrument the program to write data trace files

• Run the program on a test suite

• Invariant engine reads data traces, generates potential 

invariants, and checks them

Invariants

Instrumented
program

Original
program

Test suite

RunInstrument

Data trace
database

Detect

invariants
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Checking invariants

For each potential invariant:

• instantiate
(determine constants like a and b in y = ax + b)

• check for each set of variable values

• stop checking when falsified

This is inexpensive:  many invariants, each cheap
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Improving invariant detection

Add desired invariants: implicit values, 

unused polymorphism

Eliminate undesired invariants:  unjustified 

properties, redundant invariants, 

incomparable variables

Traverse recursive data structures

Conditionals:  compute invariants over 

subsets of data (if  x>0  then  yz)
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Outline

Operational difference technique for selecting 

test cases

Generating operational abstractions

Stacking and area techniques for comparing 

test suites

Evaluation of operational difference technique

Conclusion


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Comparing test suites

Key metric:  fault detection

• percentage of faults detected by a test suite

Correlated metric:  test suite size

• number of test cases

• run time

Test suite comparisons must control for size
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Test suite efficiency

Efficiency = (fault detection)/(test suite size)

Which test suite generation technique is better?

fa
u

lt
 d

e
te

c
ti
o

n

test suite size

S2

S1



Michael Ernst, page 32

Different size suites are 
incomparable

A technique induces a curve:

How can we tell which is the true curve?
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Comparing test suite 
generation techiques

Each technique induces a curve

Compare the curves, not specific points

Approach:  compare area under the curve

• Compares the techniques at many sizes

• Cannot predict the size users will want
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Approximating the curves 
(“stacking”)

Given a test budget (in suite execution time),

generate a suite that runs for that long

To reduce in size:

select a random subset

To increase in size:

combine independent suites

T1

T2
S2

S2'

S1

S1'
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Test suite generation 
comparison

1. Approximate the curves

2. Report ratios of

areas under curves T1

T2
S2

S2'

S1

S1'
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Outline

Operational difference technique for selecting 

test cases

Generating operational abstractions

Stacking and area techniques for comparing 

test suites

Evaluation of operational difference technique

Conclusion


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Evaluation of operational 
difference technique

• It ought to work:  Correlating operational 

abstractions with fault detection

• It does work:  Measurements of fault 

detection of generated suites
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Subject programs

8 C programs

• seven 300-line programs, one 6000-line program

Each program comes with

• pool of test cases (1052 – 13585)

• faulty versions (7 – 34)

• statement, branch, and def-use coverage suites
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Improving operational 
abstractions improves tests
Let the ideal operational abstraction be that 

generated by all available test cases

Operational coverage = closeness to the ideal

• Operational coverage is correlated with fault 
detection

• Holding constant cases, calls, statement coverage, 
branch coverage

• Same result for 100% statement/branch coverage
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Generated suites

Relative fault detection (adjusted by using the 
stacking technique):

Def-use coverage: 1.73

Branch coverage: 1.66

Operational difference: 1.64

Statement coverage: 1.53

Random: 1.00

Similar results for augmentation, 
minimization
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Augmentation

Relative fault detection (via area technique):

Random: 1.00

Branch coverage: 1.70

Operational difference: 1.72

Branch + operational diff.: 2.16
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Operational difference 
complements structural

Best technique
Total

Op. Diff. equal Branch

CFG 

changes
9 11 9 29

Non-CFG 

changes
56 54 24 134

Total 65 65 33 163
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Outline

Operational difference technique for selecting 

test cases

Generating operational abstractions

Stacking and area techniques for comparing 

test suites

Evaluation of operational difference technique

Conclusion
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Future work

How good is the stacking approximation?

How do bugs in the programs affect the 

operational difference technique?
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Contributions

Stacking and area techniques for comparing test 

suites

• Control for test suite size

Operational difference technique for automatic test 

case selection

• Based on observed program behavior

• Outperforms statement and branch coverage

• Complementary to structural techniques

• Works even at 100% code coverage

• No oracle, static analysis, or specification required


