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Abstract
We introduce a new approach for disfluency detection us-
ing a Bidirectional Long-Short Term Memory neural network
(BLSTM). In addition to the word sequence, the model takes as
input pattern match features that were developed to reduce sen-
sitivity to vocabulary size in training, which lead to improved
performance over the word sequence alone. The BLSTM takes
advantage of explicit repair states in addition to the standard
reparandum states. The final output leverages integer linear
programming to incorporate constraints of disfluency structure.
In experiments on the Switchboard corpus, the model achieves
state-of-the-art performance for both the standard disfluency de-
tection task and the correction detection task. Analysis shows
that the model has better detection of non-repetition disfluen-
cies, which tend to be much harder to detect.

1. Introduction
A characteristic of spontaneous speech that makes it different
from written text – including informal text – is the presence of
disfluencies. Disfluencies include filled pauses, repetitions, re-
pairs and false starts. Disfluencies are frequent in all forms of
spontaneous speech, whether casual discussions or formal argu-
ments [1]. They present significant challenges for some natural
language processing (NLP) tasks on spoken transcripts, such as
parsing and machine translation [2, 3, 4]. On the other hand,
disfluencies also reflect speaker interaction [5]. Disfluency de-
tection is most often used as a preprocessing step for NLP,
where the goal is removal of the non-fluent word sequences.
For extracting information about the interaction, the detection
of both disfluent and correction parts can be important.

A standard annotation of disfluency structure [6] indicates
the reparandum (word or words that the speaker intends to be
replaced or ignored), the interruption point (+) marking the end
of the reparandum, the associated repair, and an optional inter-
regnum after the interruption point (filled pauses, discourse cue
words, etc.)

[reparandum + {interregnum} repair]

Ignoring the interregnum, disfluencies can be categorized into
three types: restarts, repetitions, and corrections, based on
whether the repair is empty, the same as the reparandum or
different, respectively. Table 1 gives a few examples. In this
work, we use a slightly modified representation from [7] that
distinguishes repetitions (marked by ‘S’) and flattens the nested
structure in a sequence of repetitions, which has led to improved
disfluency detection in prior work [7, 1].

Most work on automatic disfluency detection is aimed at
cleaning transcripts for further processing, where only reparan-
dum detection is of interest. In this study we are interested in
both the reparandum and repair, motivated by a long term goal

Type Annotation
repair [ I just + I ] enjoy working
repair [ we + you’d ] have to just
repair [ we want + {well} in our area we want ] to
repetition [S it’s + {uh} it’s ] almost like
repetition [S the + th- + the ] decision was
restart [ by + ] it was attached to
restart [ we would like + ] let’s go to the

Table 1: Examples of different types of disfluencies.

of understanding variability in disfluency production related to
cognitive load and social context. We introduce a new approach
to disfluency detection given text transcripts that leverages a
Bidirectional Long-Short Term Memory (BLSTM) neural net-
work and integer linear programming. The model achieves
state-of-the-art performance on the standard Switchboard task
given speech transcripts, and analyses show contributions from
including pattern match features in the input.

2. Related Work
Approaches to automatic disfluency detection generally fall into
two categories: sequence tagging and parsing-based models.
Many studies have used a sequence tagging model with begin-
inside-outside (BIO) style states that label words as being inside
or outside of a reparandum word sequence. The most success-
ful approaches have leveraged discriminative models, including
conditional random fields (CRFs) as a classifier [8, 9, 7, 1, 10].
In [9], Integer Linear Programming is integrated with the CRF
for optimizing over the prediction sequences. An alternative for
improving the CRF uses an F-score matching objective, multi-
step learner and Max-Margin Markov Networks (M3N) [11];
the objective change had the highest impact. The current best
performing system uses a Semi-Markov CRF [12].

Another set of approaches leverage parsing and represent a
noisy channel relationship between the reparandum and the re-
pair [13, 14]. The noisy channel parsing models could be used
for identifying repairs, though results on that task have not been
reported. Incremental dependency parsing combined with dis-
fluency removal has also been explored [15, 3]. Because incre-
mental models do not benefit from reparandum/repair similarity
cues, they tend to have lower performance than delayed decision
models. Depending on the downstream application, an advan-
tage of parsing models in general is that they jointly optimize
for both parsing and disfluency detection performance. A dis-
advantage is that they require treebank annotation for training.
Since we are ultimately interested in applying disfluency detec-
tion to a broad set of domains, we will leverage a sequence tag-
ging approach, but we extend the label state space to separately



model repetitions and repairs, as in [1].
Two recent studies have applied recurrent neural networks

(RNNs) to disfluency detection. One approach explores incre-
mental detection [16], with an objective that combines detection
performance with minimal latency. Because of the latency con-
straints, this approach has weak performance in comparison to
other studies on disfluency detection. Word embeddings learned
by an RNN have also been used as features in a CRF classi-
fier [10]. In our current study, we also use an RNN, particu-
larly the Long-Short Term Memory (LSTM) framework, but in
the standard disfluency detection paradigm (non-incremental),
which allows us to use a bidirectional architecture and lever-
age the relatedness of repair and reparandum for repetition and
correction disfluencies. Unlike [10], the RNN is the classifier,
so our feature embeddings are trained in an end-to-end manner,
and they also leverage pattern matching features.

While most studies of disfluency detection focus on using
only text transcripts as input, it is well known that prosodic
cues are useful in combination with lexical cues [17, 18, 8, 12].
Prosody can carry information that is not represented in tran-
scripts (e.g. length of pauses, fundamental frequency trends),
which is relevant for detecting interruption points. However,
most studies find that the gain from combining prosodic features
with lexical features is relatively small, so our current study fo-
cuses on lexical features alone. Adding prosodic information
to the existing features is an easy modification with the neural
network framework, which we hope to explore in future work.

3. General Framework
The standard disfluency detection task involving reparandum
detection is often called “edit detection.” The typical sequence
tagging model represents 5 states: beginning of the edit region
BE, inside edit IE, the word before the interruption point IP,
one word edit BE IP and outside of the edit (including both re-
pairs and fluent regions) O. For evaluation of edit detection, all
words with labels other than O are considered edit words. We
also consider two extensions of the state space. The first exten-
sion (called explicit repair modeling) includes 8 states, adding:
C for the repair word, and C IE, C IP for words in nested dis-
fluencies that belong to both a reparandum and a repair. For
the edit detection task, the C IE, C IP states are considered part
of an edit region. Note that having explicit repair states does
not allow correction detection, as defined in [1], since the re-
pairs associated with repetitions vs. corrections are not distin-
guished. The expanded state space uses the extent of the correc-
tion to improve edit detection. The second extension includes
17 states for joint reparandum and correction detection, expand-
ing all non-O states to separately represent repetition and non-
repetition disfluencies, as in [1]. With this model, we can detect
corrections and take advantage of the fact that repetitions tend
to benefit from different features than other disfluencies.

As reviewed in section 2, CRFs have been used widely for
disfluency detection and therefore represent a strong baseline
for comparison to the new models developed here. In our work
we use the CRF++ toolkit [19]. Starting from a core feature
set of lexical, distance-based pattern match features and disflu-
ency language model features used in [1] (listed in Table 2),
which were engineered for multi-domain disfluency detection.
In particular, features 7-17 indicate a pattern match in terms
of specific words or POS tags, providing domain-independent
indicators of repetitions and simple corrections. The CRF fea-
tures are generated by applying feature combination functions
provided by CRF++ templates to create new features within a

Core Features
1. word index
2. part of speech (POS) tag
3. is the word a filled pause
4. is the word a discourse marker
5. is the word a part of an edit word
6. is the word incomplete
7. distance to the repeated word in the following window
8. distance to the repeated bi-gram in the following window
9. distance to the repeated word in the preceding window
10. distance to the repeated bi-gram in the preceding window
11. is the POS bi-gram repeated in the following window
12. is the POS bi-gram repeated in the preceding window
13. is the word and the POS of the next word repeated
within the following window
14. is the POS and the next word repeated within the
following window
15. is the word bigram repeated within the next N words
allowing some words to come between the two words
16. is POS trigram repeated within the N words
17. distance to the next used conjunction word
18-20. 3 language model features described in [1]

Table 2: Core features used to generate CRF features and fea-
ture embeddings.

relative time frame. For example, using the core feature ’word
index,’ we can construct n-gram features by applying feature
functions across a local time window. A total of 258 features
are generated, including combinations of different core features
as well as n-grams and POS n-grams.

4. Proposed Method
4.1. RNN Architectures

We use LSTM RNNs for the task of disfluency detection, since
LSTMs achieve good performance in a variety of NLP sequence
modeling tasks [20, 21, 22]. A typical memory cell includes
gates to weigh input and history impact at a particular time,
allowing the model to determine their relative importance and
alleviating the vanishing gradient problem [23]. As a result,
LSTMs can effectively represent longer phrases, which is useful
for the disfluency detection task. For disfluency state sequence
tagging, we use a softmax layer at the top layer of the LSTM.

An LSTM is a directional model and predicts a state given
its previous states. For disfluency detection based on text alone,
it is difficult to predict a word as disfluent by only observing
the words prior to the occurrence of the interruption point. Un-
expected word sequences following the interruption point and
similarity between the repair and the reparandum are impor-
tant indicators. Therefore, the LSTMs used here take the in-
put sentence in reverse order. In addition, we explore use of a
bidirectional LSTM (BLSTM) [24]. As shown in Figure 1, the
BLSTM uses past and future states in predicting the disfluency
tag of a given word. This is particularly useful for predicting
both repairs and corrections (8-state and 17-state models).

4.2. Feature Embeddings

As shown in Figure 1, the input vector consists of three main
components: word index, POS tag, and disfluency-based fea-
tures, as listed in Table 2. The disfluency features provide useful



Figure 1: Sample Bidirectional RNN architecture which in-
cludes feature embeddings. wt is a word at time t, post is the
POS at time t, fk,t is the k-th core feature at time t , and yt is
an output state (e.g. BE IP).

information about word identity (filler or incomplete words) and
patterns (if the exact word appeared previously in a fixed length
window). We separately map one-hot representations of these
features to embeddings for a dense representation, and then con-
catenate them to use as the input to LSTM cells. For initial-
ization of the word embeddings, we train a backward-LSTM
language model on the Switchboard corpus with disfluencies
removed. The initialization for POS tag embeddings is similar,
with the training text mapped to POS tags. All other parame-
ters have random initialization. During the training of the whole
neural network, embeddings are updated through back propaga-
tion similar to all the other parameters.

4.3. ILP post-processing

While the hidden states of LSTM and BLSTM are connected
through time, the outputs from the softmax layer are not.
This often leads to inconsistencies between neighboring labels,
sometimes resulting in label sequences that are not valid paths
in the state space (i.e. ‘illegal’). For example, the model can
output the sequence of labels O IE IE IP, which is not a valid se-
quence since disfluencies always start with BE tag. As such, an
additional smoothing over LSTM predictions is needed. Some
of the possible approaches include LSTM-CRF [25], Markov
model [16] or Integer Linear Programming (ILP) [9]. In this
work we use the ILP solution previously presented in [9] for
disfluency detection. Since [9] uses constraints for 5 states only,
we collapse the softmax proportions from the larger state space
to 5 states, as in

P (yt = O) = P (yt = O) + P (yt = C)

P (yt = IE) = P (yt = IE) + P (yt = C IE)

P (yt = IP ) = P (yt = IP ) + P (yt = C IP )

(1)

for the 8-state model.

5. Experiments
We assess the proposed BLSTM model for disfluency detec-
tion in experiments on the Switchboard corpus of conversa-
tional speech [26], using the standard division of the disfluency-
annotated subset into training, development and test sets. The

Model P R F
CRF 5 states 91.7 78.1 84.3
CRF 8 states 91.3 77.6 83.9
CRF 17 states 92.9 76.1 83.7
BLSTM 5 states 93.6 79.0 85.7
BLSTM 8 states 91.5 81.5 86.2
BLSTM 17 states 90.7 81.5 85.8
BLSTM 8 states + ILP 92.7 81.9 87.0

Table 3: Performance of the LSTM and Bidirectional LSTM
on the dev set in the edit detection tasks.

flattened version of repetition annotation provided in [7] is
used.1 As in other studies on disfluency detection, performance
is measured using precision/recall of words in edit regions. In
addition, we use the same measure on finer grain labels, includ-
ing different types of edit regions (repetition vs. non-repetition
disfluencies) and corrections.

All code is written in theano [27]. LSTM and BLSTM pa-
rameter optimization is done using Adadelta [28] with a mini-
batch size of 50. We use the Switchboard development set to
tune the LSTM parameters (number of dimensions) and to find
an optimal stopping point for LSTM training. The dimensions
of the word embeddings and the hidden dimension are sepa-
rately tuned for each variation. The best number of dimensions
for the BLSTM with 17 states is 100, and for all other models it
is 150. The POS embedding dimension is chosen to be 5 for all
models. As mentioned previously, word and POS embeddings
are initialized using a backwards LSTM language model trained
on cleaned-up Switchboard text, and other model parameters
have random initialization. All models are trained using only
sentences that have 50 or fewer words due to the high com-
putational complexity of longer histories in the LSTM. Fewer
than 1% of Switchboard sentences have length greater than 50
words. In testing, all sentences are processed. For the results
described below, significance is assessed using a paired t-test
on the number of errors in each sentence.

5.1. Model Performance

Table 3 shows the CRF and BLSTM performance on the devel-
opment set for the edit detection task using all three state space
alternatives presented in the Section 3. As shown in the table,
the BLSTM has significantly better performance in edit detec-
tion compared to the CRF (p < 0.01 for all cases). Moreover,
the BLSTM with explicit repair states achieves the best result
in the edit detection task, which we hypothesize is related to the
success of the noisy channel model approach: explicitly repre-
senting the extent of the repair allows the model to match the
repair to the reparandum for improved detection. Table 3 also
gives the result of the ILP post-processing on the best model.
Although some corrections to illegal sequences do not impact
edit detection performance, many do. ILP improves the preci-
sion of our BLSTM predictions without hurting the recall, but
only 0.4% of labels change so the decrease in errors is not sta-
tistically significant.

The 17-state models give slightly worse performance for
edit detection, but they enable correction detection, the results
of which are shown in Table 4. While the BLSTM gives signif-
icantly better overall F-score, the two models have very differ-

1Annotated data is available at http://ssli.ee.
washington.edu/tial/data/disfluencies/.

http://ssli.ee.washington.edu/tial/data/disfluencies/
http://ssli.ee.washington.edu/tial/data/disfluencies/


Model P R F
CRF 17 states 73.2 37.5 49.6
BLSTM 17 states 57.3 51.3 54.2

Table 4: Correction detection on the dev set using 17 states.

Model P R F
Qian et al. [11] - - 84.1
Honnibal et al. [3] - - 84.1
Ferguson et al. [12] (lexical) 90.1 80.0 84.8
BLSTM 8 states 91.4 80.3 85.5
BLSTM 8 states + ILP 91.8 80.6 85.9

Table 5: Comparison of the BLSTM model to state-of-the-art
methods in the literature on the test set.

ent precision-recall tradeoffs. Augmenting the 17-state BLSTM
with ILP post-processing could potentially recover some of the
precision lost in moving to the BLSTM.

5.2. Method Comparison

We evaluate our best models on the test set and compare them
to recent methods in the literature leveraging only transcripts.
For edit detection, we use the explicit repair state space (8
states), which achieves the best results on the development set,
including results both with and without ILP post-processing.
The results are shown in Table 5. Both systems beat the best
prior result with lexical cues only, achieving state-of-the-art
performance of 85.9. Again, the decrease in errors for ILP
is not statistically significant. The BLSTMs also beat the
higher performing version in [12] that leverages prosodic fea-
tures (F=85.4). Incorporating prosodic features in a neural net-
work framework is straightforward and will likely lead to an
additional gain.

The 17-state BLSTM model also leads to a significant per-
formance gain in correction detection on the test set, achieving
an F-score of 57.7 compared to 49.6 for the CRF,2 correspond-
ing to a 16% improvement. The 17-state BLSTM finds disflu-
encies that the CRF misses entirely, as in the examples:

Ref: a [drug policy there + drug testing policy] where they
BLSTM: a [drug policy + there drug testing policy] where they

Ref: so [we’re + uh our discussion’s] about uh the care of
BLSTM: so [we’re + ] uh our discussion’s about uh the care of

The second case could arguably be analyzed as a restart.

5.3. Ablation study

We conducted an ablation study on the effect of engineered fea-
tures with the different models. Results are shown in Table
6 for edit detection (5 states) on the development set. Differ-
ences between the LSTM and CRF systems in both configura-
tions are significant (p < 0.05), but the BLSTM improves over
the LSTM only with the expanded feature set (p < 0.05). For
the words-only cases, the CRF word features include 1-3 grams
within a window of 8 around the word, whereas the LSTM and
BLSTM use only the current word index and incorporate longer

2The CRF result is the same as that reported in [1]. That work de-
scribes it as a 16-state model, since the outside-disfluency state was not
counted, but it is the same as the 17-state model described here.

Model (input) P R F
CRF (words) 94.4 52.8 67.7
CRF (words+ pos + feat) 91.7 78.1 84.3
LSTM (words) 87.6 71.4 78.7
LSTM (words + pos+ feat) 92.4 79.0 85.2
BLSTM (words) 87.8 71.1 78.6
BLSTM (words + pos+ feat) 93.6 79.0 85.7

Table 6: Comparison of 5-state CRF, LSTM and BLSTM edit
detection models with different feature sets on the dev set.

Model (input) Repetitions Other Either
CRF [1] 17 states 94.9 61.1 83.7
BLSTM 17 states 94.1 66.7 85.8

Table 7: F scores of different types of edits for the CRF and
BLSTM on the dev set.

context through the recurrent structure. When we add POS and
pattern-match features, all systems improve, but the CRF bene-
fits much more than the other models. The impact of expanding
the feature set is much greater than the different model config-
urations in all cases.

5.4. Repetitions vs. Non-repetitions

Repetition disfluencies are much easier to detect than other dis-
fluencies, although not trivial since some repetitions can be
fluent. In order to better understand model performance, we
evaluate the 17-state models in terms of their ability to detect
repetition vs. non-repetition (other) reparanda. The results are
shown in Table 7, showing that the BLSTM is much better in
predicting non-repetitions compared to the CRF, allowing bet-
ter modeling of more complex disfluencies. We conjecture that
the dense word representation in the BLSTM captures more of
the reparandum/repair “rough copy” similarities than the simple
POS pattern-match features.

6. Conclusion and Future Work
In summary, this paper introduces a Bidirectional LSTM neural
network approach to disfluency detection, achieving state-of-
the-art performance of 85.9 F-score on the standard disfluency
detection task using explicit repair states, lexical feature em-
beddings, and integer linear programming post-processing. In
addition, we improve the state-of-the-art in correction detection.
Analysis shows that performance gain is for cases that are hard-
est to detect: restarts and repairs.

The best case BLSTM models leverage engineered pattern
match features, indicating that the BLSTM architecture is not
sufficiently powerful to learn these cues automatically with the
amount of available annotated training data. While the pattern
match features are known to be useful in cross-domain scenar-
ios [1], an open question for future work is whether other neural
network architectures might more effectively learn these cues.
Another question is whether dynamic programming alternatives
to ILP might improve performance. The experiments described
here use hand transcripts, but the BLSTM framework is well-
suited to combining text and prosodic features because of the
continuous-space representation of text, which is another direc-
tion for future work.
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